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Abstract

We propose to designate as dynamic interactive artificial in-
telligence (dAI) a cross-section of existing work in artificially
designed and artificially evolved systems meant for minimal
forms of interaction with human users. This approach bor-
rows principles from artificial life and human movement sci-
ence to avoid pitfalls of traditional AI. Counter to tradition,
it prioritizes user-machine inter-dependence over autonomy.
It starts small and relies on incremental growth instead of
trying to implement advanced complete functionality. It as-
sumes a perceptual ontology founded on movement coordi-
nation rather than object classification. Its development pro-
cess is better described as reverse self-organization rather
than reverse engineering. dAI can be viewed as a precur-
sor to or pre-condition for enactive AI and an alternative to
traditional frameworks grounded on information representa-
tion. We then give examples from our work in human move-
ment science where we have used minimal dynamic interac-
tive agents to induce specific beneficial effects in human par-
ticipants’ movement skills. We also show how dAI can be
exploited by both connectionist and symbolic AI.

Introduction
Imagine the following two scenarios for the development of
an intelligent vehicle. First, the traditional ideal, the fully
self-sufficient car will be a transportation service. You step
inside the passenger area and the machine is so independent
that you do not even have to see where it is going. The intel-
ligence of the machine substitutes for some of our capacities
as perceiving and self-moving animals, to the point that the
human drivers only exist to fulfill the intelligent car’s pur-
pose. In the second scenario smart cars can serve the role
of an adaptive interface between the driver, the road, and
the vehicle’s complicated physics, increasing and sharpen-
ing our abilities to move safely at high speeds on cluttered
terrain. Cars exist to enable new forms of human movement.
In addition to being somewhat threatening, the former sce-
nario still looks very difficult to achieve, if even slowly be-
coming possible with the present tools and principles. The
latter scenario, however, empowers the human in the loop
and is a matter of future development.

Here we suggest that the field of AI can learn from arti-
ficial life’s interaction-based approach, starting with small

functionality and big principles and allowing technology to
adapt and evolve. What is needed for fluid integration of bi-
ological, artificial, and cognitive systems is to avoid one of
AI’s original mistakes, namely always aiming for full self-
sufficiency and complete mimicry of human skills but failing
to achieve them. Before we learn to grow artificial intelligent
”organisms”, we might have to become better at growing ar-
tificial cognitive ”organs”.

Even though AI is frequently divided into symbolic AI
(sAI) and artificial neural nets (ANNs), both traditions try to
solve the difficult problems of generativity and generaliza-
tion. For this reason, it is necessary to define a third flavor
of AI that is not concerned with autonomy and as such is
less ambitious and more attainable. It can be referred to as
dynamic interactive AI (dAI). dAI can lay claims to some of
the AI territory because several existing fields of research
loosely bound by shared principles have been addressing
some of AI’s original questions without the explicit label.
The incomplete list includes bio-inspired and soft robotics
(Pfeifer et al., 2007; Nakajima et al., 2018), embodied intel-
ligence (Pfeifer and Bongard, 2006), social enactive robotics
(Fong et al., 2003), enactive AI (Froese and Ziemke, 2009),
living technology (Bedau et al., 2010), and physical intelli-
gence (Turvey and Carello, 2012), among others. dAI not
so much proposes novel ideas as it captures common prin-
ciples. The fruitful exchange among such diverse fields re-
quires for shared language and a set of minimal primitives
while avoiding the over-generalization of existing concepts
such as AI and autonomy. To begin with, these approaches
emphasize that for intelligence to develop it first needs a
body, where having a body can be understood more gen-
erally as dynamically interacting with an environment. In-
stead of trying to internalize meaning, dAI creates condi-
tions for adaptive behaviors to emerge from dynamic inter-
actions with a machine. This capitalizes on the idea that
humans to some extent already are ”natural-born cyborgs”
(Clark, 2003).

The argument here is not that general AI will somehow
emerge from dAI, for example if there were a lot of the latter.
Rather, our aim is to show that a minimal definition of dAI
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applies to ongoing work that does not define itself as AI. Un-
like general AI which remains just a promise, the conditions
for minimal dAI are already present and deserve more atten-
tion. There are also philosophical reasons to be optimistic
about dAI. Minimal collective intentionality requires coor-
dinated task performance with shared physical constraints,
including technological and AI-driven systems, but not nec-
essarily shared beliefs, theory of mind, symbol-based meta
reasoning, etc. (Satne and Salice, 2019). Thus, in contrast to
general AI, the aim of dAI is not to communicate with the in-
tellectual mind of the users, but rather to become integrated
with their adaptively behaving body. Instead of producing
information content to be consumed by the users, the idea
is to implicitly reshape their relation with the world (Froese
et al., 2012). Importantly, just because dAI examples may
rely on minimal internal dynamics, this does not completely
limit their functional capacity when multiple agents are in-
teracting. Interaction between simulated mobile robots can
enhance internal complexity and the dynamic dimension of
the task space beyond the robots’ intrinsic complexity (Can-
dadai et al., 2019).

Human movement science, experimental psychology, and
sensorimotor neuroscience have also been experimenting
with dynamic paradigms for interaction, be it to understand
principles for acting in a complex environment or to study
human-machine interaction. Assistive movement devices
would not typically be categorized as AI but they may qual-
ify as dAI, creating the possibility to learn from human
behavioral studies. The purpose of this paper is to show
through examples from empirical work how dynamics and
interaction already allow for minimal dAI systems to be use-
ful for human users. Such studies are not usually meant to
address the field of AI directly and their relevance is not re-
alized. This is the case, we suggest, partly because concepts
of AI are prohibitively strong. For this reason, we first need
to show where dAI stands relative to ANNs.

dAI and ANNs
It is easier to see the distinction between dAI and sAI than
between dAI and ANNs. Aren’t neural nets intrinsically dy-
namic phenomena? Historically there has been an affinity
between the embodied/enactive strands of cognitive science
and connectionism. Neural nets can serve as structural com-
ponents of dAI and enable adaptive interaction with an en-
vironment (Kadihasanoglu et al., 2017; Beer and Gallagher,
1992). In what follows we point out why ANNs need to
become more interactive.

40 years ago, while cognitivism was busy criticizing the
radical interaction-centered notions in Gibson’s latest book
(1979), Geoffrey Hinton - a key figure in today’s deep ANNs
- pointed out in a commentary (1980) to a BBS article (Ull-
man, 1980) that there were good ideas in ecological the-
ory and connectionism was poised to exploit them in the
context of unsupervised discovery of patterns inherent in

the environment, not internally deduced following a rule-
based formal logical system. Later Hinton continued to
make occasional references to Gibson’s work (Hinton and
Becker, 1990). Nowadays, machine learning for robotics
is re-discovering the importance of affordances (Hsu, 2019)
while some theoretical neuroscientists are trying to make
sense of deep learning through the lens of direct perception
as a process they call direct fit Hasson et al. (2020). Deep
learning is also becoming relevant for learning hand-eye co-
ordination (Levine et al., 2018) and it will be interesting to
see if this approach will also prove useful in learning agent-
agent coordination. The task is not trivial because agent-
agent systems do not necessarily have to be synchronizing
and/or cooperative. Stable and functional antagonistic pat-
terns in sports are afforded by anisotropic coupling (de Poel,
2016).

Another relevant Gibsonian principle is self-structured in-
formation: sensorimotor coordinated interaction generates
information that is structured by the agent itself. This could
be exploited by ANNs as a signal for self-supervised learn-
ing (Pfeifer et al., 2007). A lot of this information is re-
lational, however, implying that for it to be discovered, pur-
poseful interaction with the environment is required, not just
passive comparison of the sensory and motor streams. Ac-
tive inference within the free energy minimization (FEM)
framework (Friston et al., 2009) is among the modern at-
tempts to make use of this principle, to the extent that FEM
can be applied to AI.

Evident in such efforts is the need to shift emphasis from
classification-based to interaction-based training paradigms.
ANNs are often placed in a one-directional, sequential
pipeline where learning is a blind evolution-like process the
goal of which is for perception to achieve full recognition
of objects in the environment before action is even to be
engaged (Hasson et al., 2020). This classification-based
methodology for developing AI implies an object-based on-
tology: an AI is a developing subject in a world full of pre-
existing objects whose identities, classes, and properties are
to be learned bit by bit from experience. In this context,
generalization from experiencing exemplars to higher-order
patterns tends to be the predominant challenge to ANNs. We
agree with Hasson et al. that this problem is overempha-
sized, but for a different reason: ANNs need to face their
ontology problem by acknowledging the primacy of inter-
action. Otherwise ANNs are bound to miss invariants for
interaction. Importantly, it is not a new idea that artificial
agents driven by ANNs can be evolved to first and foremost
interact, rather than detect objects and then interact (Kadi-
hasanoglu et al., 2017; Beer and Gallagher, 1992). dAI em-
phasizes the importance of such work.

What is missing from an object-based ontology is the
discovery of interaction patterns defined at the level of the
human-machine system. Where such stable patterns are
functional, in theory dAI should enable and exploit their

140

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal2020/32/139/1908406/isal_a_00350.pdf by guest on 01 July 2021



open-ended discovery. This is because closed-loop system-
environment coupling affords not only stable patterns but
also information about them. In one of the studies de-
scribed below, participants interacted with a complex sys-
tem, a chaotic oscillator, affording more than one patterns of
stable synchronization. We did not instruct participants ex-
actly how to control the oscillator; they spontaneously set-
tled on a pattern that was feasible for them and that stabilized
the chaotic oscillator.

It could be that solutions from an interaction-based ontol-
ogy scale much better in an increasingly complex environ-
ment than solutions from an object-based ontology. Hasson
et al. point out that a set of 1000 objects is already a great
feat for an ANN and yet does not even account sufficiently
for the perceptual world of an animal. This might seem like
an insufficient number if one assumes that an animals’ per-
ceptual ontology is the same as that of a natural scientist.
Affordances greatly simplify the task of the perceptual sys-
tem inasmuch as getting around in the world is concerned
(Dotov et al., 2012). To start with, I just need to perceive
two possibilities for action: sturdy surfaces that allow me to
maintain my body in a stable relation against them, and vec-
tors of motion directed towards me and fast enough to cancel
my ability to escape from them.

Reverse-self-organizing minimal
human-machine interaction tasks

Human-machine interaction and human movement science
are full of examples of dAI that does not declare itself as
such. For example, Raffard et al. (2018) used an embod-
ied, pre-cognitive approach to inter-personal interaction to
design an artificial agent that increases synchronization be-
havior and rapport in individuals with schizophrenia. Iqbal
et al. (2016) hard-coded a group anticipation index based on
dynamic systems theory in order to facilitate synchroniza-
tion among a group of a human and several robots.

In developing the stimuli in the following experimental
paradigms we assumed an approach that can be referred to as
reverse-self-organizing instead of reverse-engineering. The
ultimate solution was not fully specified to participants and
not determined in the task design. Instead, after an in silico
search, where we simulated multiple systems and interac-
tion scenarios, we selected a dynamic system and a parame-
ter set allowing for coordination to appear. This approach is
needed when investigating the boundary conditions and use-
fulness of patterns that emerge in the interaction between a
human agent and a dynamic system. Note that the opposite
approach tends to dominate human experimental psychol-
ogy where full specification and control of the stimulus is
usually required in advance. We also believe that in general
’reverse-self-organizing’ is very apt for the sort of work seen
in the field of artificial life.

step

step step

Figure 1: Closed-loop rhythmic auditory stimulation in-
teracting with gait. The aim was to induce, not pro-
duce spontaneous synchronization between musical beats
and the walker’s footsteps by setting the whole task
space in a parameter range within the entrainment do-
main of a two-unit Kuramoto system of coupled oscilla-
tors. Figure adapted from (Dotov et al., 2019). (A video
clip showing the task dynamics in a simulated trial at
https://vimeo.com/297434940.)

Interactive cueing for spontaneous auditory-motor
synchronization in PD patients’ gait
In the context of improving rhythmic auditory cueing for
the gait of patients with PD, we developed a gait-to-hearing
feedback system with one degree of internal dynamics
(Dotov et al., 2019). The stimulus timing consisted of a
phase oscillator with a Kuramoto coupling from gait phase.
The intrinsic tempo and coupling gain were manipulated to
tune the stimulus to the individual walker’s dynamic pro-
file but without going all the way to automatic, forced syn-
chronization. Thus, we did not enforce but provided the
conditions for spontaneous entrainment to emerge. Indeed,
this cueing strategy proved most useful, compared to non-
adaptive or automatically adaptive strategies, as it resulted
in effortless synchronization and the most gain in cadence
(Dotov et al., 2019). As participants were not told to syn-
chronize with the stimulus and the stimulus was adaptive
and tuned to the individual without automatically falling at
the precise time of footsteps, see Fig 1, we provided the con-
ditions for spontaneous entrainment to emerge (Dotov et al.,
2019).

Interactive learning of chaos control to acquire
beneficial variability
Dynamic principles allow implementing natural variability
generators that explore and sync to patterns. This work was
inspired by robotic studies where intrinsically chaotic con-
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trollers seen as central pattern generators with adaptive vari-
ability discovered stable periodic patterns of interaction with
a physical system through the phenomenon of feedback res-
onance (Pitti et al., 2010). Can a dAI system with certain
desirable amount of variability and indeterminacy be used
to train human motor variability? In an auditory-motor co-
ordination task we asked participants to try to learn to con-
trol a chaotic system with their hand movements, see Fig
2A. Performance was compared against a non-interactive
chaotic and a non-interactive periodic condition. As ex-
pected, causal interaction measured with the transfer entropy
between the human and artificial agents increased along trial
but only in the interactive chaotic condition, see Fig 2B-D.
Pre-post transfer tests suggested that the interactive task was
more beneficial relative to the two other conditions (Dotov
and Froese, 2018a,b). Here we performed additional analy-
sis motivated by the dAI ideas of under-determined design.
We found a minimal form of open-endedness: without ex-
plicit instruction participants discovered that they could per-
form the task either by locking on a period-1 or a period-2
rhythm, Fig 3. Note that the apparatus obeyed deterministic
dynamics but multiple behavioral scenarios were afforded in
the system of user and stimulus. Hence, the apparatus sup-
porting dAI can be relatively simple and deterministic but
dAI as a phenomenon defined across the human-machine
system can possess a small degree of indeterminacy and
open-endedness.

dAI is about transparent human-machine
interaction, not complete autonomy

The approach advocated here continues ideas advanced in
the domain of ecological interface design, with one impor-
tant difference. Past work applying ecological principles to
human-machine interaction has dealt mostly with situations
where the machine is a tool towards achieving a certain goal,
possibly even spanning a means-end hierarchy (Vicente and
Rasmussen, 1990). dAI needs not restrict itself to mediating
the user’s existing goals. Instead, it can help create novel
forms of interaction and even novel tasks that do not make
part of the user’s typical ecology. For instance, in the first
experiment described here participants walked along with a
musical auditory stimulus but the task was not to entrain to
the music. Walking in synchrony with the beat of a song is
not typically a thing that we do in our normal lives. It does
happen occasionally, however, and we may even notice that
it is interesting and pleasant. More generally, a key aspect of
dAI is that the focus of engineering is no longer subsumed
only by the question ”What is its function?” but also takes
seriously the question ”How does it feel?”

While dAI allows for open-endedness, it is not its top pri-
ority. We assume that there is a long path of multiple open-
ended advancements from interactive agents to the full au-
tonomy expected from general AI. In terms of classifying
the types and pathways to living technology (Bedau et al.,

Figure 2: UNpredictable Interactive system with SONnified
movement (UNISON). A) The transformed sensor state (ac-
celerometer) of a hand-held device was streamed to a com-
puter and sonified by mapping it to the pitch of a pure tone
in the one channel (blue arrows). A state variable (x2) of
the chaotic Chua oscillator was similarly sonified in the left
channel (green arrows) and driven by the hand movement
signal u scaled by a coupling gain ε. ε = 0 made for a non-
interactive condition. In a third condition that was periodic
and non-interactive the tutor was replaced with a sine wave.
Sample video clips at https://vimeo.com/267437234. B-D)
In each condition, the surrogate test for significant transfer
entropy from user to artificial tutor and from artificial tutor
to user, averages (SE) across participants shown along prac-
tice trials. Figure adapted from (Dotov and Froese, 2018a).

2010), dAI incorporates some pre-conditions for secondary
living technology of mixed class as it requires software,
hardware, and a human user, but does not cover many cri-
teria such as self-maintenance, self-repair, and agency. For
similar reasons dAI is less ambitious than social enactive
robotics (Fong et al., 2003) which raises the bar very high. It
is a tall task for robots to read off intentional states from hu-
mans. We assume, however, that before something is living
technology it needs to be interactive. Hence, as a small step
within the longer project of reverse-self-organizing living
technology, we suggest starting with certain minimal con-
ditions for useful interactive technology.

The apparatus supporting dAI does not do much; it is
more of an interface than an agent. Looking at the conditions
for something to possess intrinsic meaning like living beings
(Froese and Taguchi, 2019), dAI cannot possess much depth
because it is supported by deterministic physical phenomena
and is not meant to be sensitive and adaptive to its precarious
existence. dAI’s potential is revealed when seen as an inter-
action pattern over a human-machine system. In the asym-
metric relation between autonomous agent and environment
(Froese, 2014), dAI plays a more passive role. Hence, dAI
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Figure 3: In the interactive condition the participant can dis-
cover how to stabilize the stimulus either on a period-1 or
period-2 orbit. We analyzed the entropies of the series of
periods (inter-peak intervals) and amplitudes of each stim-
ulus cycle. A) The distribution of stimulus amplitude en-
tropies across all trials, divided in four groups by level of
performance. A bimodal distribution emerges for the highest
scoring trials. B) Same for periods. C) and D) Sample tri-
als exhibiting approximately equal levels of synchronization
performance (Cmax/RMSE = 1.16 andCmax/RMSE =
1.17, respectively) but either a constant (period-1) or an al-
ternating (period-2) stimulus pattern, visualized by the series
of half-amplitudes (black) and periods (blue) in the insets,
and confirmed by the entropy levels (SPeriod = 2.067 and
SPeriod = 2.807, respectively).

avoids (for now) the problem of a clash of autonomies that is
to appear if genuinely living technology or strong artificial
life is to also serve as technology for human use.

The two empirical studies that we presented here involve
minimal forms of dAI with very little capacity for adapta-
tion. dAI is not concerned with autonomy as much as with
creating possibilities for users to expand their behavioral do-
main and embodiment by exploiting principles of animal-
environment mutuality. Being artificial, dAI requires that
the conditions for its emergence be externally guided. Yet, a
given instance of dAI is to be discovered by the user. Impor-

tantly, the unspecified boundary between user and machine
constitutes a sharp distinction between dAI and other forms
of AI research. Here dAI is thought of as something that
subsumes both the human user and apparatus, not as the ap-
paratus that the user interacts with.

dAI may contain a seed of the properties associated with
this kind of strong artificial life. In our studies the func-
tional coordination patterns were precarious and not fully
determined by instruction or design. As such these dynam-
ics point in the direction of an adaptively behaving organ,
like a hand autonomously shaping itself appropriately to en-
able the grasping of a coffee cup. In the future, combining
ANNs and dAI promises greater parameter flexibility. Sen-
sorimotor learning with deep nets is starting to gain traction
(Levine et al., 2018). It is yet to be determined just how
adaptive dAI would become from incorporating deep ANNs
to transform sensory signals to motor output.

dAI and sAI
It is useful also to point out where dAI stands in relation to
symbolic AI (sAI). To begin with, by definition dAI is eas-
ier to incorporate in a human’s sensorimotor world than sAI.
Furthermore, sAI with its emphasis on functional complete-
ness and symbolic interfacing can become a source of alien-
ation for users. On the other hand, dAI is closer to narrow AI
than general AI because dAI is not generative. While tools
can provide a range of unexpected affordances to a human
user, they are by all means constrained by the user’s skills,
needs, and capacities.

In sAI, meaning is the object of formalization and inter-
nalization in representational structures, accomplished sep-
arately in the human and the machine. In dAI, meaning
is a feature of human-machine interaction. A dAI agent
does not try to internalize such meaning. The pleasure in
spontaneously finding yourself moving in synchrony with
something in the environment might constitute the meaning
emerging while interacting with a given sound-making dAI
but this meaning cannot be captured, stored, and transferred.

dAI is not concerned with duplicating particular skills that
humans or other animals exhibit. Turing’s idea of functional
mimicry has become a modus operandi in AI research. The
history and theory of technology, however, reveal that truly
innovative technology is often not planned (Ihde, 1999).
There could also be a pragmatic social virtue in this as it
lessens the severity of issues with robot rights and regu-
lation. The aim of empowering humans with dynamic in-
terfaces and augmenting their embodiment is ethically less
problematic than designing artificial systems to mimic se-
lected human powers because the mimicry approach threat-
ens to replace those humans whose skills are being repro-
duced.

The relation between dAI and sAI needs not be adver-
sarial. dAI is not a separate approach to AI but addresses
fundamental pre-conditions that can contribute to both sAI
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and ANNs. Some flavours of AI have been trying to build
dynamic, network, and cognitive primitives into their de-
signs from the start, such as Haykin’s cognitive radar (2005).
A potential future exchange between dAI and sAI would
not be totally surprising given that a viable solution to the
symbol-grounding problem could be to rely on the senso-
rimotor system (Barsalou, 1999). The evidence that in hu-
mans conceptual processing could rely on the motor system
goes beyond mere stimulus-response compatibility, imply-
ing that the motor system has a functional role (Vankov and
Kokinov, 2013). If AI is to follow the same strategy, it first
would need to build a repertoire of task-specific perceptual-
motor skill.

Conclusions
We proposed the label dynamic interactive artificial intelli-
gence (dAI) to capture a common thread running through
multiple fields of artificial life, robotics, human-machine
interaction. dAI is needed in order to clarify the con-
straints and capacities of a new generation of devices for
bi-directional human-machine interaction with a high level
of sophistication and dynamic bandwidth. Designing dAI
follows a principle of reverse-self-organizing useful pat-
terns of human-machine coordination rather than reverse-
engineering specific effects. This means drawing boundary
conditions that foster spontaneous patterns to emerge in the
human-machine system, rather than designing the full be-
havior. Unlike other forms of AI that focus on the autonomy
of the artificial system, dAI is defined across the human-
machine system hence this problem is less relevant. dAI is
not ambitious when it gets to its functional range, self-repair,
and capacity for self-concern. We believe it can be fruitful
to give up on autonomy and generalization in the short term
in order to enable narrow but truly spontaneous interactive
scenarios. As a form of technology, dAI is to transparently
open up new ways of interacting with the world for indi-
viduals prior to fulfilling enactive AI’s premise of autonomy
and pursuit of the agent’s own conditions of persistence. A
future direction of research is to use ANNs to optimize dy-
namic interactive agents allowing for co-adaptation between
human and artificial agents, in a union of ANNs, information
about affordances, and dynamic interactive systems.
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